10 The Exchange Integral and Exchange Constant

The classical expression for the exchange energy, valid by analogy with the quantum results,
for an atom i coupled with nearest neighbour atoms j, is the sum over the neighbours of

Wy = =248+ S; (200)

the factor of 2 being arbitrary but usually included. £ is known as the exchange parameter.
Assuming that the exchange is isotropic and that all the §;; = 4,

Wij = ~245,85;cos gy = I5%} (201)

with all §; = § (for identical atoms), using cos2y = 2cost @ — 1, assuming small angles
wi; between neighbouring spins and dropping constant terms. A more general expression for
the energy for a unit cell of a simple cubic, f.c.c. or b.c.c. structure is obtained on carrying
out the summations as

W =248a* [(Ve)’ + (Vaz)’ + (Ves)') (202)

in terms of the direction cosines o, &3, e relating the spin directions to rectangular coor-
dinate axes,

An important situation is that in which the spins remain parallel within each of a set of
neighbouring planes in the crystals with the common orientation changing from plane to
plane, as illustrated for complete rotation in four equal steps in Figure 1.56: usually a great
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Figure 1.56  All the spins in planes || OXY are assumed parallel. In the general case n (= 4 here)
is very large, & can be taken to be continuous and 3678z is not censtan

number, n1, of steps is appropriate. For a simple cubic lattice a % @ » a there are 1/a* atoms
per unit area of plane and the exchange energy per unit area is
1 L
E"nxn—;xj'sz o - (203)
& n? o n
summing equal terms over the n planes involved with all @iy = 7/n, The more gradual the
rotation, i.e. the larger n becomes, the lower is the energy,
More generally, if & is the angle between the common spin direction in the plane posi-
tioned along OZ as in Figure 1.56 and a reference axis OX, the change in 8 between planes

is ai{f9/8z) and the energy per spin pair is

?

W = 45%" [gﬁ)

The energy per unit area (for the simple cubic lattice} is thus

2 2
o [ e[

The same expression is seen to apply for other cubic lattices with

rl
= Zis (he.c.) (205)
4452
A= %—- (Fc.c) (206)

A is the exchange constant and is impeortant in characterizing domain walls as in Section 12.2.

11 Magnetocrystalline Anisotropy and Magnetostriction

The tendency for M, 1o lie along an easy axis can be described using the magnetocrystalline
anisotropy constants K;. For a purely uniaxial crystal, with ne anisotropy normal to the single



easy axis, an approximate expression for the anisotropy energy density is
Ex = K sin* 0 (207)

6 being the angle between M, and a coordinate axis parallel to the easy axis. Eg is zero
when M, is parallel or antiparallel to the arbitrarily directed coordinate axis and maximum
for & = /2, i.e. has appropriate symmetry. This would apply with other even terms and

E,(:K.sinzH+KgsinJH+'-- (208)

is more general, the number of terms chosen depending on the accuracy with which measure-
ments can be made. For cobalt at room temperature (the K; vary rapidly with temperature),

3

Ky =4.1x 10 Im™, K»=1.0x 10" Jm™

and it is clear that the simple equation (207) can be used reasonably, particularly for small
deviations of M, from the easy axis for this and in fact other materials. Exact measurements
of the torque on M, as a crystal is rotated in large saturating fields reveal a small anisotropy
in the basal plane accounted for by

Ex = K'sin? 0 + K3sin' 6 + K{sin® 0 + K3 sin®6 cos’ ¢ (209)

with 0 and ¢ the polar angle (as above) and azimuthal angle w.r.t. the ¢ axis. The superscript
distinguishes the uniaxial terms. This E is minimum, for hexagonal crystals, with M, ||

[0001] for
K1+K3>U‘ and K|>0

However, for
OQK[Q—KQ or —KL)QKQ and K[ﬁo

E is lowest when M lies in the (0001) basal plane, giving an easy-plane or planar material.
For cubic crystals an expression with appropriate symmetry is (truncated)

Ex = Ki(c26} + odai + odda}) + Ka(afo3as) (210)

In the case that
Ki>0 and K, >—3K;

the [100] axes are the easy axes and if
K, <0 and K|<—%K3 or 04K|c-—$K3
the [111]’s are easy axes. However, it is usually adequate to accept that, formally,
K, > 0~ [100], K, <0~ [111] easy axes

K, is positive for iron and negative for nickel.

Anisotropy fields may be regarded as those fields which, when applied along an easy axis,
give the same torques as those corresponding to the anisotropy and thus may be taken to
represent the anisotropy. The correspondence only applies when the magnetization deviates

from an easy direction only by a small angle A& for which sin A8 = A# is acceptable and
the torque is

d o
—@Em = "é@ﬂn”ffﬂ’f; cos 8 = poHy M A8

The torque due to the anisotropy can be expanded and truncated as

JE oE *E 52
TK:*__{:(_&) +(_£) i (dlEﬁx) 45
30 30 /-0 30° / p=0 30* /g

since dE /86 = 0 when M, lies along an easy direction. Equating the two,

1 P Ex )
Hg = o 211
K poM; ( 0= /)y LELL)

(Ha is often used to denote a general anisotropy field with Hg used to indicate that magneto-
crystalline anisotropy is specifically considered.) Using equation (208),

Ty, =

Hg = - |2K (= sin® 6 + cos® 0) + 4K (—sin* 6 + 3sin” 6 cos® )
.u-UMX #UMS A=0
2K, 212)
JU-UMs =
Similarly, it can be shown that
2K, e
Hg= [100] easy direction (213)
”-()Ms
[%K| + %K:) ; 3
Hy= ———F—— [111] easy direction (214)
-uI]M.-;

There is no lower limit to Hg since, for certain materials (e.g. certain Ni—Fe alloys),
K| — 0. The wide range of values is indicated by

[ron: 45, Cobalt: 4200, SmCos: 20 000 kAm~" and other values are given in
Chapter 5.

Magnetostrictive strains are anisotropic or there would be no saturation magnetostrictive
length change 8/ observed as the M vectors rotate to give saturation, from an initial ideal
demagnetized state with equal volumes magnetized along each of the easy directions. This
effect is described by the saturation magnetostriction coefficient A, = 8(//. Typically, i, =
—10 to —100 x 107® but the anisotropic coefficients may be positive or negative. The
measured deformation A — A4, with A4 for demagnetization, depends upon the direction
cosines ¢, a, o3 specifying the direction along which M, is eventually aligned and the p;
specifying the direction along which the measurement is made. Usually the two coincide
and A — Ay is designated Ago(A1;) when the direction is a cube edge (diagonal), etc. The
L4 themselves can be expressed (e.g. [20]) as

Ad = By + '_%Bi + %34
for [100] easy directions, K| > 0 as for iron, or

J\-dZBU'f"%Bl‘]’%B}‘i'%BJ



for [111] easy directions, K; < 0 as for nickel, and further
oo = By + 3By
M= 3Ba+ 1(B3— 3By) + §Bs
for iron, etc., and
hioo = 3B — {B3 + §Bs
At = $B2+ §Bs

for nickel, etc. The B; are magnetostriction constants related to §;; and L;, which are
respectively the elastic compliance moduli and the magnetoelastic coupling constants. The
deformation of any cubic crystal can be written in an approximation (for powers of a; up
to the second) as

3!

/
For a random polycrystal the longitudinal magnetostriction is obtained by averaging (with
all a; = P;) as

= 2x100(@} B} + @3B + a3B3 — ) + M (ieafi Ba + aaesPafs -+ e3P B3)

A= koo + I

For uniaxial crystals Bozorth [21] used

al 5 7 50 202 2p2 2p2
= = k(e = DB} + k(0383 + 0383) + ks (@3B + 033) + 20k — ka)aarsPof
+ 2kq01 By (o3B3 + @2B2)
with ky = —110, ky = —45, k3 = =95, kg = =235, (all x 107) for cobalt.

12 Magenetostatic Energy and Domain Walls

12.1 Magnetostatic Energy and Domains

The state in which a ferromagnetic is usually found is one of zero magnetization. In a
polycrystal this could be because each crystallite is uniformly magnetized, but the directions
of M, are distributed randomly. More generally, and necessarily in single crystals, it may be
inferred that the crystal, or each crystallite, is divided into a number of regions or domains
of volume v; each with uniform magnetization of magnitude M; = M, such that in the
demagnetized state ) v,-M} =0, for j = x,y,z. Obvious minimal examples are shown
in Figure 1.57. The domain boundaries or domain walls are sheets of thickness usually much
less than the domain width, in which the magnetization rotates (usually) gradually between
the directions in the two domains, the width and surface energy density of the walls being
calculable in terms of A, K and the wall orientations.

The tendency towards demagnetization by the formation of domains accords with the
consequent reduction of the total energy, initially considered as the sum of the magneto-
static self-energy and the domain wall energy (for uniaxial crystals with M parallel to easy
directions forming 180° domains). The magnetostatic energy E,, may be considered as that

oREEd, T,

L &= l
@ 1
Ay

(b)

Figurle 1.57 Rud‘imenlary 180° domain structures in a uniaxial crystal (a) and in a cubic (iron) crystal
(b) with 90° domains affording flux closure and minimal magnetostatic energy

required to bring up the constituent dipoles from infinity, i.e. as the energy of formation:
as discussed in Chapter 4, it is calculated by evaluating the integral of the product of
pole density and potential over the specimen, the potential being that generated by the
magnetization. Alternatively and equivalently,

Egy= %/uoHd -Mdv (215)

over the specimen volume, where Hy is the internal demagnetizing field.
If the specimen has the shape of an ellipsoid of revolution, Hy is uniform if M is uniform.
For oblate or prolate spheroids with M parallel to a principal direction [22],

Hy = -NM

with N a (positive) dimensionless demagnetizing factor. For ellipsoids of revolution
(Figure 1.58 with b = ¢) with M || the long axis a (prolate spheroids)

:(;3—1

1 q 5 1
Ny \/ﬁ In(g ++vqg"—1-=1)] - —=(n2¢—1) (216)
o ()I"

with ¢ = a/b and the second expression for ¢ 3> 1. For flat ellipsoids with two long axes
a and b nearly equal and much greater than the short axis c,

Figure 1.58 A general ellipsoid with Cartesian axes taken to coincide
with the principal axes
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For oblate spheroids with M parallel to the circular plane,

2 N |
[. . c sin”' < ] (218)
L= /]

S ”i.-'l T

(217)

=

k] =

g2 —1

with ¢ = diameter/thickness.

The relation
N+ M +N=1 (210

applics to the three factors appropriate to the three axes of an ellipsoid. Thus, by symmetry,
for a sphere
Ne=Np=Nc=13 (220)

For a long cylinder with M || the long axis a, N, = 0 because the “end poles’ are distant

and thus
Ny=N.= (2210)

1] =

which applies when M is normal to the long axis. For a thin plate, considered as an ellipsond
with £ = 0, two factors are zero and N, = 1, as inferred previously,
If the principal axes of an ellipsoid coincide with the Cartesian axes as in Figure 1.58,

the surface poles due to the v component of a generally directed M can only give a field

Il OX, etc., and thus

H.l. Ny 4] 0 Mn Ny 0 0 M,
(H.‘.)=(U . ﬂ)(M_-,)=( 0 Na D )(M}) (222)
. 0 0 N, M. 0 0 Nu M.

If the axes do not coincide it is necessary 1o take the components of M along the ellipsoid
axes, find the field components along these axes and then resolve these along OX, OY, OZ
so that, formally, Hy = NM, where N is the demagnetizing tensor which is diagonal only
in the above special case.

Magnetostatic or demagnetizing energies of short eylinders or rectangular blocks with
uniform magnetization are readily calculaed numerically and effective demagnetizing factors

can be defined in relation 1w these, or by

N =-=H/M

where #y is the mean demagnetizing field caleulated. These can only be used in approximate
caleulations,

If o cube (or sphere) s divided equally into two domains as in Figure 15T, £g s
halved and (1 1t were divided into a great number of domains, it is clear that My and
1 would tend towards zero, However, the wall energy density per unit volume £, would

become very great and an equilibrium domain width is expected to correspond to a min:

of I.E“' + E.). However, since Ey, is the energy per unit volume it is-rf:sil 3 "":Emum

p:;rt:::ius.bcluw a certain critical size it may not be energetically !':n;ou‘r'ib]}; 5::-‘;[! b

rlzv_en a smgh.t donminl wall and very small particles or crystallites are etl:lr:u[ud '””m:l:l':l'?

:nngl_e-dc-mum behaviour' as noted in Chapter 5, Section 2.1, the ~;inglr.:l- anl Tw; :I::mlr?ilr:

Cnergics are egul i = z i I : |

- ﬁni:;:lr:;i.utl“l at r = re = 9y [(pM?7) and for iron ro = | nm. y is the wall encray
If “.1'?1 particle size is reduced even further the peak value of W, as M. rotates

of K M“-'g.x particle volume, may become less than k7 at room 1:rn|l1c!.'1t:|re o :i:'}g

energy barriers to rotation become relatively ineffective and the distribution ::rf thr*.: ;ﬂ? c

moments of a plnrlii:lc assembly may be given by applying Boltzmann statisti x"jﬂ_"?“':

superparamagnetic behaviour, discussed in Chapter 5, SECIiD: 2.2, . | i

12.2 Domain Walls

The more gradual the rotation of M the lower 1s the exchange energy. If M, we bitrur
pinned at oppositely magnetized faces of a crystal it migE;t be e‘;dp-ectcd \Ilnt thzf 1lh1f_1]}'
should occupy the whole specimen. However, this would gixre a high value :}f Ey rrm.ﬂtlj:-l‘l
ularly apparen for a uniaxial crystal) and it is thus expected that a wall with ,1,. P-H'l":
(asymprotic) width & (A, K) and surface energy ¥ (A, K) should be fnn';md Us le ﬂi1ltul-fr
K — L:F}, & <« [, the domain width, and § = 0 is assumed in calculating E. GRS
. Taking the rotation to occur along OF and to be indicated by the singh;“";n rle £(z) as i
Figure 1.56 (but with a great number of steps so that # can be considered ‘asbu cnnzjnﬁ:u::

o um i a
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Assuming that #(z) is in fact that functi i i ini
)13 : on which gives the minim srey el b
a small change 80, the change in y is pi ST and intraducing

d: (223)
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and assuming M to be uniform within the domai imi
. omains, where the limits i .
first term is zero. The condition 8§y = 0 is Smoelvelitopn e

= [2£1(8) &0

and since &9 §s arbitrary, this means that

o, ¥
W gz = (225)



(which could have been written directly as the Euler equation of the one-dimensional vari-
ational problem). Multiplying by 80 /9z and integrating,

3\’ ds
H=Aa(—=), d=vVi—= 226
1) (az) i) (226)
[since & = 0(z) only]. Integrating this formally,
f dg
2= A ] &
o Vf(0)

Noting from the above that the exchange and anisotropy terms are equal,

Yieo = 2\/1/' JF©)do (227)
0

e.g.
Yiso = 2/A [ VK sin6 do = 4VAK (simple uniaxial case) (228)
Jo

A typical value of A may be obtained from the Bloch T*? law as 107''Jm™, giving
(K=13x10"Jm™)

¥150(SMCos) =46 x 107 Jm™>

which is practically an upper limit, with no lower limit since K — 0 may be envisaged.
Taking both z and 6 to be zero at the wall centre, f () = K cos® # and

fA % do [A 0 =
Kj) cosf Knan(2+4) )

using a standard integral. 6(z) throughout the 180 wall is as shown in Figure 1.59 with
asymptotic approaches to M in the bulk of the domains. Truncation may be achieved by
extrapolation using 86/dz at the wall centre as shown, giving

6= n% = i (230)
0z |._g K
180 T % T & T -JI T
rd
150F P -
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Figure 1.59 The variation of the moment orientation throughout a 180 domain wall

Taking A as before and K =4 x 10* Im~ for iron,
8130(Fe) = 50 nm
8130(SmCos) = 2.8 nm

For iron the continuum ‘model is justified but for SmCos most of the rotation is predicted
to occ‘ur oveT a few lattice planes only, and then a small threshold field (intrinsic coercive
field) is regul'red to move the wall, even in a perfect crystal [23). Again, if K — 0 there is
no uppcl;r limit, but even when efforts are made to achieve X = 0 in practice (to optimizé
X as shown later) a variety of observations indicate that walls wi i :
Y aegan alls with finite though large
E'ver? in cubgic materials, 180" walls, e.g. between [100] and [100] domains, are common
but in iron 900 walls separate [100] and [010] domains, for example, and in nickel etc.
(K < 0);;’! arfd _1(}9 walls separate domains magnetized along (111) as in Fieure 6.3
For a 180" wall in iron with the spins rotating in a (100) plane, ) i

Vigo = 2VAK (231)
while for a 90° wall
ygo = VAK (232)

The gpins at the centre of a 180° wall can follow an easy direction. Further results are given

by Lilley [24], following Landau and Lifshitz [25, 26], by Néel [27] and by Kaczer [%8]
Where walls intersect surfaces || M narrow strips of pole density may form which cz;n

attract the fine particles (~ 10 nm diameter) of a colloid of magnetite, such colloids or

1.0um

E;lgt:tre 1.60. The formation of Ehai:1s pf minute magnetite particles in the strong stray fields above
he mte_rsecnop of a narrow 180° domain wall with a crystal surface L M; of barium ferrite (giving
rise to interesting optical effects in a polarizing microscope)
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Figure 1.61 (a) An array of 180° cylindrical, bubble, domains with M normal to the surface of a
thin single-crystal film of Tby3 Eugs Y24 Ga,, Feyg 02 revealed by the Faraday effect using a laser
source (see Chapter 6). (b) In a 50 Hz, 15 Oe field the walls of the larger domains are seen to oscillate
freely but those of the smaller domains, assumed to have a complex and high energy (Bloch line)
structure, remain static [29]

‘ferrofluids’ being readily prepared. Strong field gradients arise above the intersections of
walls with surfaces 1 M and lines of particles may be formed to visualize these walls
as in Figure 1.60. Figure 1.61 [29] shows 180° walls in a uniaxial garnet crystal, revealed
by the Faraday effect (Chapter 5); the caption indicates the complexities that may arise.
Reference may be made to specific works on domains [30, 31] and to Chapter 4, Section 2

and Chapter 6, Section 1.
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Figure 1.62 For a uniaxial single‘—dom;\in sphere the equilibrium # depends in a simple way on the
balance of thg torques due to the field and the magnetocrystalline anisotropy (a), giving the result in
(b) where M is the component of M, along H

13 Magnetization Processes

13.1 Rotation

For the uniaxial sphere in Figure 1.62 the 6-dependent energy density is K sin’6 —
ol M, sin@ and equilibrium corresponds to

K SIHOESS = M MERD =0, 15 Snd =P
2K
The magnetization induced in the field direction is
_ HM? 2
M = Msinf = pg——=, X = -Ai = KoMy (233)
2K H 2K =

X is constant up to saturation at H = Hg = 2K [(uoM) as in Figure 1.62(b). Using two
constants it is easy to show that the equation for the equilibrium M is

M 2
K\ + 2K, (H) ] (234)

from which M and x for any H can be computed. Curve-fitting M (H) can give estimates
of Ky and K. For initial susceptibilities, extrapolated to zero H or measured in very small
fields (M/M,)* can be ignored and y is as before.

With a field at angle « to an easy direction the initial susceptibility is

M
HM, =2—
Ho E M

5

M2 sin® o
2K

for a uniaxial or cubic, K| > 0, material. For K; < O the anisotropy energy for small
deflections is Ex = 2|K |62, giving

Xi = Ho (235)

o
_ oM sin® «

i= 41K, (236)



For a random assembly of particles, using (sin’a) = %,
=M niaxial, cubic Ky > 0) (237)
3K,
el i ki 0) (238)
2K,

13.2 Switching: Coherent Reversal

With H precisely parallel to an easy axis and antiparallel to M, HxM; = 0. If M; is
displaced by a small angle 86 from the easy axis the anisotropy field concept applies and
if H > 2K /(j1oM;) the net field is in the direction of H and adequate to overcome energy
barriers during rotation, i.e. even with 86 = 0 the original direction is metastable. Thus it
may be inferred that abrupt switching occurs in a reverse field if

2K

(239)
,(,Lufrf,,-

H=H.=Hg =

This can be confirmed by plotting the energies and torques as H is varied.

The magnetization loop is thus as shown in Figure 1.63. The remanent magnetization
remaining after removing a saturating field is M; = M;. The coercivity or coercive field H,,
required to give zero magnetization, is in this case the switching field since M = 0 is an
unstable state.

If H is applied at 45° to the easy axis the reader may readily confirm that My rotates

reversibly until a discontinuity occurs at a field given by

LT 2K si T T o P K
poH M; sin =5 sin 7 cos 7 ie. H. = oM.

since beyond the corresponding angle the torque due to the field increases with 6 and that
due to the anisotropy decreases. The loop is as shown in Figure 1.64, after Stoner and
Wohlfarth [32].

The dependence of the magnetostatic energy of an ellipsoid of revolution on the angle
between M and the « axis is shown in Chapter 4 to be the same as that of Ex on the
angle between M and the (single) easy axis, and with K = %,ung(N;, — N, ) for the shape

H M

Mg

Figure 1.63 H || the easy axis gives no torque but discontinuities are expected to occur to give the
loop shown

1
[0.10,90

——35 |

— 80

M/Ms

Figure 1.64 A set of ‘Stoner-Wohlfarth” loops for the field orientations indicated, given in terms
of h = H/Hy or h = H/H, for either magnetocrystalline or shape anisotropies [32]

anisotropy the simple results applying to crystal anisotropy can be applied to shape effects
as, for example,

oM} I 2K,
=L . Ho= % = My(N,— N,
Tl P U T A (D

Further, a shape anisotropy field may be derived as before as
Hy= M{(N, — N,) (241)

and the set of magnetization curves in Figure 1.64 can be given in terms of h = H/H,
with Hy = Hg or Hy = H, applying equally to either anisotropy. A virtual upper limit to
H. = H,, for very long iron particles, is

Hc = (Nh = N{J)Ms = (_‘"E‘ — O)M., = 850 kA |T|._I

If both types coexist, as in an anisotropic ellipsoid, the sum of the three appropriate
energy terms can be minimized to predict the behaviour. If a single easy axis coincides with
the a axis of the ellipsoids the two anisotropy fields may be summed. Shape effects can
increase or decrease values of H. due to crystal anisotropy alone.

It has been observed that lattices generally deform when ordering occurs and these
deformations are anisotropic and depend on the direction of the magnetization. If an initially
demagnetized specimen of length {, with randomly oriented M vectors, is magnetized there
is a small change of length 8/ in the direction of magnetization and the magnetostriction
coefficient is defined as

81
b= (242)



with A, for saturation. If the magnetization lies at an angle @ to the direction of measurement
of 8/ it is found that 1

== 32 (cos’6 — 1) (243)
If the magnetostrictive deformation occurs in the presence of an applied tensile stress o,

then considering the work done the variable part of the corresponding energy is
E, = —3)0cos’6 = —3h0 (1 — sin@) (244)

When A, > 0, £, is minimum for & = 0 and 8 = 27 and the magnetization tends to be
aligned along the (tensile) stress axis, giving a uniaxial anisotropy analogous to a crystal
anisotropy with K replaced by

K, = ko (245)
with an anisotropy field
3
Hiyom 28T (246)
oM

Most of the principles developed here are relevant to single-domain particles with no
domain wall processes involved, and are developed later as appropriate.

13.3 Remanence

For aligned single-domain particles it has been seen that M, /M, can be unity. For a randomly
oriented assembly of s—d crystallites, if it is assumed that, on removal of a saturating field,
M; in each crystallite relaxes back to the nearest easy direction, then averaging gives (as

shown by Gans [33])

Anisotropy ~ Uniaxial ~ Cubic, K, > 0  Cubic, K} <0
M./ M 0.5 0.832 0.866

13.4 Induced Magnetization and Domain Wall Motion

Coeroivities predicted for coherent rotation for iron, nickel and cobalt range from 2.5 to
850 kA m~' but measured values, for presumed multidomain specimens, are usually orders
of magnitude smaller than these. Calculated rotational susceptibilities are of the order of
10 to 100 compared to measured values up to 10° for single crystals of iron and measured
remanences may be virtually zero. Domain wall processes are much ‘easier’ than rotation.

A field applied parallel to a 180° wall may be considered to exert a pressure on the wall

P“ = Zﬂg]ffM., (247)

in view of the change in energy as the wall moves. For a structure such as that shown in
Figure 1.57(a) this may be balanced by a restoring pressure due to demagnetizing fields,
but if the specimen becomes indefinitely elongated the latter becomes negligible and x
increases indefinitely. (This neglects the intrinsic wall coercivities which may exist even
in perfect crystals if the walls are exceptionally narrow [23] and the continuum model is
not fully applicable [34].) In general, if it is assumed that the wall remains plane it is easy
to calculate and minimize the sum of E, and Ey = —poH - M to give the equilibrium

wall positions and magnetization. This gives the anhysteretic magnetization curve since the
crystal is implicitly perfect with no variation in the domain wall energy with its position.
M. = 0 = H. and there is no hysteresis loss, defined by

WH = Mp #H dM {248)

around the ‘loop’; this is the net work expended by the field in changing the magnetization
which is equal to the area of the M/H loop (in this case zero).

If a specimen contains a large number of walls the magnetization may be taken to be
homogeneous as an approximation. For an ellipsoidal specimen with low crystal anisotropy
the induced magnetization and susceptibility are, as previously noted,

_ XH, M X 1
= Ta Nz Xe = e (Nxy > 1)

Ho 1+Nx N
Thus if x = M/H, with H the internal field, is high then the effective susceptibility is
controlled by demagnetizing effects unless N — 0.

In technical applications overall demagnetizing effects are avoided by assembling strips of
material into rectangular frames, winding ribbons or tapes into toroids or producing toroids
of sintered materials such as ferrites. The properties measured for such specimens can be
taken to be characteristics of the material (and its particular microstructure), although some
internal demagnetizing effects which arise where M, changes in direction at grain boundaries
may still be involved.

In such specimens, however, y and u, = 1 4 x may be controlled by impediments to
free domain wall motion caused by any imperfections or irregularities that render the wall
energy position-dependent. These include any variations in A or K or, more drastically, the
presence of pores (or non-magnetic inclusions) or inclusions of foreign magnetic phases.
A wall tends to remain in a ‘trough’ where its energy density is anomalously low or to
be ‘repelled” by regions where y increases. A pore or inclusion reduces the local wall
energy density by effectively removing a small area of the wall. Moreover, if a relatively
large spherical inclusion is bisected by a narrow wall the associated magnetostatic energy is
halved, since it is effectively an isolated sphere with M opposite to that of the surroundings,
and this clearly impedes the wall.

The wall motion thus proceeds by a series of Barkhausen jumps between energy minima,
and if the specimen loads a coil the effect will be the production of noise in the voltage
generated. In a randomly oriented polycrystal only a certain fraction of saturation can be
achieved by wall motion (corresponding to the remanence) and this must be followed by
rotation. If a core is biased by a static field so that an a.c. field gives small excursions of
the magnetization at a high level, it is found that the noise decreases, i.e. the signal-to-noise
improves, although the susceptibility and signal per unit a.c. field amplitude falls.

Many materials may be expected to contain uniformly distributed inclusions, e.g. of iron
carbide in iron, with narrow size ranges, and thus the field required to initiate wall motion
will move the walls past successive inclusions. When a near-saturating field is removed
and reversed this same characteristic ‘wall-impedance field’ magnitude will be required to
cause demagnetization and thus constitutes the coercivity. This gives, for a grain-oriented
specimen, a virgin curve from, say, an a.c. demagnetized state (achieved by gradually
reducing the amplitude of an initially large a.c. field), and an M/H loop, somewhat as
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Figure 1.65 (a) The expectation for a grain-oriented material with a _characle_rislic wall impcdar_lcc
field H. and (b) a sigmoid loop for a randomly oriented polycrystal wnl_\ rotational processes taking
over at the higher fields; (c) indicates how applied tensile stresses may induce a magnetization, and
remanence, in small fields [30]. Repeated stress cycles for random SiFe (3 per cent)

shown in Figure 1.65(a). The curvatures are due to (a) some variatign in th.e wall impf:dance
fields and (b) demagnetizing effects, both internal in association with grain boundz.mes gnd
associated with small components of M; across the external surfaces, since the orientation
is never perfect. In such cases the following approximations obviously apply:

Wh = dpogHe M,

M,
o (249)
Xm =
m 1 MS
pr =14 .

with W, the hysteresis loss per cycle and x, the maximum susceptibility, i.e. the tangent
of the greatest angle of slope of the line drawn from 0 to points on Ehe lpop‘

For randomly oriented polycrystals the loops are more as shown in Figure 1.65(b). The
pronounced curvatures giving a typically sigmoid virgin curve are due, at low fields, to the

existence of a range of wall pressures due to varying angles between the field and the walls
and, at higher fields, demagnetizing effects and the merging of wall motion and rotational
processes.

In the development of soft magnetic materials, with high permeabilities and low
hysteresis, the main objectives are the elimination of features impeding wall motion or the
reduction of their effectiveness. The first is achieved by purification and homogenization, as
well as stress relief since local stresses cause variations in the total anisotropy. The second is
achieved largely by minimizing the anisotropy, (and magnetostriction) as in Ni-Fe alloys or
permalloys, to give minimal y and very wide walls. The inclusions etc. may then be much
smaller than the wall width and their effectiveness is reduced [35, 36]. In extreme cases
the walls may occupy a substantial proportion of the specimen and the merging of the wall
motion and rotation occurs at low levels of M, giving initial susceptibilities x; comparable
to maximum susceptibilities. [For the loops in Figure 1.65(a) applicable to grain-oriented
silicon iron, ¥ < Xmax-)

A wall impeded at a particular point will tend to be plucked like a bow string, but
the curvature is opposed both by the increase in total wall energy and the introduction of
magnetostatic energy due to the components of M, across the wall. Thus the walls in high
Ms, high y materials such as SiFe tend to remain planar while those in very soft ferrites
and alloys bow more readily.

If the crystallites are relatively free of imperfections but the walls are restricted at grain
boundaries, either naturally due to magnetostatic effects or due to intergranular porosity etc.,
as occurs in ferrites, then the initial permeability may be largely associated with wall bowing.
The greater the span the easier is the motion in relation both to the surface tension effect
and the magnetostatic energy involved. It is frequently found that p rises approximately
linearly with grain diameter (see 2.3, Chapter 5).

One way to minimize the anisotropy is to reduce the grain size so extremely that, over a
distance for which M is constrained to be nearly uniform by the exchange, the orientation
of the crystal axes changes so that the anisotropy averages out, i.e. to produce nanocrys-
talline materials (see Chapter 5, Section 2.3.1, final part) or, ultimately, amorphous materials
(Chapter 5, Section 2.3.1). There appears currently to be rather a contest between the devel-
opment of these newer materials and the improvement of conventional materials.

The application of a tensile stress to a specimen in a field which itself gives little induced
magnetization, e.g. the earth’s field, may, by affecting the total anisotropies, favour the
growth of certain domains and induce a substantial magnetization remaining, partially, as
a remanence when the stress is removed (see, for example, [37, 38] and the theory of
Brown [39]), as in Figure 1.65(c). Motor vehicles, ships and submarines acquire magnetic
signatures which may be removed by elaborate ‘de-Gaussing’, and the historic production
of compass needles by hammering in the earth’s field doubtless depended on stress-induced
magnetization.

13.5 Domain Nucleation

If complete saturation is attained a new problem arises since to achieve demagnetization
new domains must nucleate and grow, though in many cases residual domains may persist
in association with pores, defects on surfaces even when M — M; closely, and the problem
is then only apparent.
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Figure 1.66 The dependence of the nucleation fields H, in crystals of EuFeO; with damaged
surfaces, on the magnitude of the saturating field and its direction, suggesting exchange coupling
with foreign phases, exchange anisotropy (by C. Tanasoiu and the author)

Since the magnetization must reverse locally to form the nucleus of a 180" domain, for
example, reverse fields of the magnitude of Hg would appear to be required. However,
these would cause complete reversal by rotation and it is known that nucleation fields H,
are usually much lower than H; indeed, in many soft materials domains appear to nucleate
spontaneously in zero reverse applied fields. A major factor appears to be the reinforcement
of reverse applied fields by local stray or demagnetizing fields, including the effects of field
components transverse to the applied fields and to M (see, for example, [40]).

In hard magnetic materials, permanent magnets, the coercivities may be controlled by
extremely strong domain wall pinning due to deliberately contrived multiphase structures or
fine precipitates, but in high-anisotropy single-phase materials . appears to be controlled
by nucleation, as discussed in Chapter 3.

In a famous demonstration by Sixtus and Tonks [41] a wire of permalloy was stretched
to give a stress-induced easy axis along its length (A, > 0). After saturation in a ‘positive’
direction the specimen remained saturated, M, = M, even in small negative fields. However,
when a negative pulse field was applied along a small length of the wire a domain was
nucleated and a single wall swept along the wire to give a giant Barkhausen jump encom-
passing complete reversal, as inferred from the voltage pulses produced at different times
in two pickup coils around the wire. Thus information was obtained both on nucleation and
on domain wall velocities.

In certain cases the nucleation fields depend on the previously applied saturation
fields, as originally demonstrated in orthoferrite crystals by the author and Mclntyre [42]
(Figure 1.66). This is associated with the presence of foreign phases formed during specimen
preparation and identifiable by Faraday microscopy, exchange-coupled to the bulk. It is
only as this material becomes saturated that the nucleation fields approach high values (see
Chapter 6, Section 1). It has been suggested that related effects are important in a number
of permanent magnet materials.

14 Classical Magnetization Dynamics

The principles governing the approach of M to its equilibrium magnitude and direction in
an applied field, a state assumed in the foregoing treatments, are discussed in Chapter 3.

Figure 1.67 The (classical) precessional motion of an undamped spin or magnetic moment in an

applied field with longitudinal and transverse components 0nste i i
app ANSVETs s of constant ma o <
indicates the effect of damping b L B

For‘a m.oment W, e.g. M x volume for a single-domain particle, the undamped equation of
motion is dp/dr = yp x B with B a field applied at an angle 6 to p. Solutions (for B || 0Z)
are shown to be 11, = p siné cos awyt, Hy = psinf coswyt, pi- = pcos# = constant, where
.w“ = yB. The moment = moves on a cone or precesses, at wy, and no man'netizz,ition is
fnduced in the field direction. This is natural since energy changes consequer?t on changes
in @ B clearly require the introduction of damping or relaxations transferring energy to a
reservoir or ‘lattice’. When damping is introduced the precession is modified and p spirals
towards B (Figure 1.67). The gyromagnetic response arises from the inevitable ussociatio:il
of angu]z!r momentum with & or M and is thus a very basic feature of magnetic behaviour

For .smg]e—domain particles or saturated specimens p may be considered the totai
magnetic moment. Kikuchi [43] showed that the minimum switching time for reversal of
the magnen.zalion was Tyin = 2/(y By) and that this was achieved by setting A = y M, with
A the damping parameter introduced by Landau and Lifshifz [25]. ) h

If a second smaller field is applied in the OXY plane and rotates in phase with p at
@ = ay then it is conceivable that p may be caused to approach the direction of B, with an
energy change, giving a crude picture of ferromagnetic resonance as developed in Chapter 3

For the dynamics of domain walls a familiar damped equation of motion may be .uscd-:.

mi+ By +av =2MB(1) (250)

\?*ith m the effective wall mass, # a damping coefficient, o a stiffness constant and the
rlght—hand side the impressed periodic force. As a wall moves the spins rotate in a manner
aqu to precession in an effective field; the integral of the square of this field was used by
Donn.g [44] and Becker [45] to calculate an excess wall energy proportional to ¥ and an
effecu.ve mass by equating this energy to i'mi'z. It can be shown that the damping (retarding)
forceb is directly proportional to velocity if eddy currents control the damping. Finally, if ¥
fmd X — 0,08 =2M,B/A, with A the total wall area, and since the induced mac'netiz‘ation
iIs M = 2M;Ax, @ can be related to the low-frequency susceptibility by i

oM,
X

o =4

(251)



The solution of the widely applicable equation (250) is standard. Clearly if # = 0 and the
r.h.s = 0 the frequency of free oscillation is

(252)

o
Wy = —
m

When 8 # 0 but 8% < 4am (and the r.h.s. is included), a resonant response occurs with

peak absorption at
w = (-’; - m) (253)

As B increases from a minimal value the resonance peak is first broadened and then disap-
pears to be replaced by a gradual fall in the response, which is termed a relaxation.

When pulse fields of constant peak value are applied the acceleration period is usually
negligible and the first term in equation (250) can thus be neglected. Once the walls have
broken free from the impeding sites at H = H, the third term is irrelevant and the wall can
be considered to move in the excess field according to

Bi =2uoM(H — Ho), v = R(H — He) (254)

with R the wall mobility. The switching speed depends on the number of walls but is
inversely proportional to (H — H.): - = S(H — H).

15 High-Frequency Susceptibilities and Losses

The energy stored in a coil or inductor can be expressed in terms of the inductance L and
current flowing i, or the fields, according to (Chapter 4, 1.8 and 1.11):

E = %/B-Hdu = jLi? (255)

For the energy density £, assuming B || H,
dE = HdB = po(HdH + H dM) (256)

If B = uH and p is constant, dE = pH dH and integrating as the field is built up from zero
E:= %u H? = %BH with this restriction. The expression for dE takes account of the energy
of the magnetization in the field and also shows that even in the absence of magnetizable
material, i.e. in space or effectively in an air-filled coil, work must be done to create the
field. However, this ‘field term’ is reversible and there is no associated net energy flow
from a source to an inductor which presents an impedance but no effective resistance. The
second term, pugH dM, may also lead to reversible energy changes throughout a cycle with
no net energy flow or losses if the magnetization is induced reversibly, but more generally
the hysteresis loss per cycle [equation. (248)] is the area of the M/H loop (x ) and in
the general case is non-zero due to finite coercivity. Usually the term ‘hysteresis loss’ is
confined to the loss for the quasi-static loop. As the cycle frequency increases the loops
may be seen to expand, with additional high-frequency losses. Low-amplitude loops can
frequently be approximated as

M = xoH + inH* (257)

Figure 1.68 Approximated low-amplitude loop:M = yy H + %nH: with y; the slope of the broken
line and 1 an empirical Rayleigh constant. The loss is o nH}

(see Figure 1.68) with x, the anhysteretic initial susceptibility and » the Rayleigh constant.
The hysteresis loss per cycle is then

w = $ufnH} (258)

with H, the field amplitude and  the initial relative permeability.
It is clear by simple geometry that as loops resembling that in Figure 1.68 are traversed
dynamically there must be a phase difference or lag § between M and H as indicated by

H(t) = Hycos wt
M(t) = Mycos(wt — §)

= My cos wt cos § + My sinwt sind

M{; cosd o880 Mn sin d Hosi 3
= ——— Hyco: sinw
!‘.,“ () o HU )
= x'Hycoswt + x" Hysin wt (259)
defining
My cosd . Mysiné
bl S ‘ o £220 (260)
l’]ﬂ .HU

In complex notation with H(t) = Hye' | assuming that
M(t) = xH(t) = (x' —ix")Hoe
= (x' —ix")Hy(coswt + i sinwt)
= x'Hycoswt + x"Hysinwt +i(x Hysinwt — x" Hycos wt)

then the real part of M corrcspond§ to equation (259). Thus x' and x” can be interpreted
as the real and imaginary parts of a complex susceptibility:
x=x —ix"=|xle® =|x|cosé —i|x|sins (261)

I

with |x|* = x? + x".



The power loss per cycle per unit volume is
T T dM

We = [ poH dM :f poH —dt
Jo 0 dr

T T:
= — [ ,uux’l-.’g"w cos wi sinwt df + / mox” Hffw cos® wt dt
JO 0

=nx"uoHg (262)

over the cycle time T = 27/w, the first term giving zero and the second evaluated as
(l;’w](%wr + % sin 2wt). Thus the power loss per second per unit volume is

P = ‘%(L},MDXHHS (263}

This is clearly the a.c. power loss since P — 0 as w — 0, explicitly and because x” — 0
also, as & — 0, and it is assumed that M follows H exactly at its equilibrium value. Thus
Xo = My/Hy is the anhysteretic initial susceptibility. Such treatments are usually taken to
apply specifically to initial susceptibilities or the corresponding initial permeabilities.

If a zero-resistance air-filled coil has inductance Ly then L = ulLy when it is filled
by a core of constant permeability . When the permeability is complex the complex
impedance is

Z=R+iX =iwLou =iwLop' + wlLoun"
R wL(],U-”
X =wlop'

with R the resistive and X the reactive component of the impedance.

Plots of p” and p' against frequency are termed permeability spectra and examples
are given in Figures 1.71 and 5.18. They may be indicative of so-called relaxations with
gradual fall of x' and rising u” or of resonances with a peak in p” as p' falls rapidly
(although relaxation is also, of course, involved in the latter). The resonances require the
existence of restoring torques or forces as afforded by anisotropy. The relaxations may be
associated with the diffusion of carbon atoms in iron or the diffusion or hopping of electrons
between ferrous and ferric ions in ferrites, and these may also lead to magnetic after-effects,
an appreciably slow approach to the equilibrium magnetization, and disaccommodation of
the permeability, slow decreases in the real part being due to the progressive stabilization
of certain states of the magnetization by the diffusion. In very highly insulating oxide
materials with minimal Fe** content the formation of spin-waves coupling directly to the
lattice vibrations (phonons) is invoked.

16 Eddy Currents

In metals and relatively highly conductive oxide materials, eddy current losses are expected
to predominate. Empirically the major distinction is that eddy current losses depend strongly
on the specimen dimension: strip or sheet thickness or powder particle size. Eddy current
effects are not unique to, but are enhanced in, magnetic materials and form the basis of induc-
tion heating, techniques from the surface tempering of steels to delicate medical treatments.
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/ Figure 1.69 Construction for eddy currents in a cylinder

Applying the relation for the electric field £, which derives from Maxwell’s laws:

dB
Ejdl =— ~d
9§ I / / 5 ds (264)

to the infinitely long cylinder of Figure 1.69 gives

,dB rdB
2nrE(r) = —mr*—, Qe E(r)=—z— 26
) a ie. E(r) S (265)

The surface integral applies to the area enclosed by the radius » and it is assumed as a
simplifying approximation that dB/dr is uniform. The induced current is
. E(r) r dB
iN=—=—-——
) 5 2p dt (266)

with p the resistivity. The power loss in an annulus between r and r + dr is Ei(2mrdr)
per unit length of the cylinder. Integrating, the instantaneous loss per unit volume is

P_L/‘R rdB AR
SIR2 )y \ 2@ 2odr )Y
1 (dﬂ)z/" 3 R* (dB\® R* , (dH\?
=—|— rdr=—1[|—| =—upu"{ —
20R* \ dr /] Jy 8p \ dr 8p de

Integrating over a cycle with H(r) = Hycoswt = Hycos2nft, the mean power loss
becomes A
- }'{2 RE 2 EHZ
P = _"_f___“_ (267)
4p

This is quoted by Smit and Wijn [46] for example who also gave

= 2R FRHE

P= # (plate, thickness R) (268)
- mREFIHZ

P —n%‘(-)—j-_” (sphere, radius R) (269)

(The expressions quoted by Smit and Wijn contained a factor of 107'° to give the quantity
in W cm™3 when H is taken to be in Oe and p in © cm, but such factors are unnecessary
in the SI and the losses are automatically given in W m~*, remembering that u = g p0.)
The losses are now dependent on @?, rather than w, and the dependence on the square of
the characteristic dimension is introduced.



The losses as calculated above are usually found to be too low by a factor of about 3
since homogeneous magnetization was assumed and in practice intense losse‘s are associ-
ated with moving domain walls, except at extremely high frequencies, at which the walls
are effectively demobilized by these effects and (homogeneous) rotation takes over. The
magnitude of the anomaly depends on the widths and spacings of the walls and these are
usually unknown. _

It may be repeated that in the foregoing dB/dt, and by implication B, was taken to be
independent of 7, i.e. uniform throughout the cylinder. This will never be wholly true. Ina
thin annular skin on the outside of the cylinder H can be identified with the applied field
due to the continuity of the tangential component. The currents induced in this annulus
create a reverse field within (and only within) this annulus which detracts from the applied
field and thus the penetration of the field is limited. The equation governing the field is

5 i dH

V°H (270)

p dt
which may readily be solved in the one-dimensional case (Figure 1.70) assuming the usual
separation H = f(t) x fa(y) with boundary conditions corresponding to H = Hye'™" at
the surface, y = O
e
2p
The frequency is unchanged but a phase shift proportional to y is introduced. The magnitude

decreases exponentially within the material and H is virtually excluded for y substantially
greater than . A skin depth 8 is defined as that at which the amplitude is reduced by 1/e:

[ 2
ad =1, ie. 8= — (272)
T

e.g. at 50 Hz for silicon iron, § &~ 1 mm, which is much less than the value for copper
(=~ 10 mm) with a lower value of p (2 x 107'°Q m) but p, = 1. The currents may be
shown to behave in a similar manner:

H=H./y,t)= Hoe~ % efl@r-an, where o = (271)

i(wh—ay)

=l =ige "2e

and the power loss per unit surface area may be obtained by integration as

Hop s
P =1/~ H (273)

700007

- X

. T O I
Coil or current sheet

Figure 1.70 The tangential field // must be the same just inside the material but then falls off
exponentially

with Hy the r.m.s. value. It may also be seen that the dissipation is very non-uniform
and that, for example, selective surface heating of steels may be achieved in an important
technical application. Full analyses can also be made for plates of finite thickness and for
cylinders: with cylindrical symmetry the diffusion equation becomes Bessell’s differential
equation and the results are obtained as Bessell functions.

It is now seen that the simple results given in equations (267) to (269) apply for R < §
substantially, so that uniform penetration of the field may be assumed.

The governing equations have the form of the diffusion equation. Since the functional
for the diffusion equation is known this may be solved numerically by the finite element
method (see Section 4.3, Chapter 5) and a very substantial literature on this may readily be
located in the obvious journals. (The time-dependent Schrodinger equation has the form of
the diffusion rather than the wave equation and the author has found the solution of this to
be straightforward.)

In the usual case the objective is to reduce eddy current losses by the use of thin strips (in
the past by introducing wires or metal powders) or, of course, by attention to the resistivity
values of metals or the substitution of metals by the relatively insulating oxides or ferrites.
(For ferrites p ranges from 10° for MgFe,O; through ~ 10 for NiZn ferrites to 1073Q m
for Fe304.) However, eddy currents may be viewed more positively with applications for
induction heating ranging from metallurgy to medicine.

The treatments of relaxation/resonance losses and eddy current losses are distinct. The
former depend on the material and the latter depend also on the geometry. The use of
complex permeabilities is not appropriate for eddy currents since the phase lag varies
spatially. The short-range motion of electrons in the hopping mechanism must be distin-
guished from the long-range motion giving the extensive currents assumed in the eddy
current analyses, but if the activation energy for hopping is progressively reduced the two
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Figure 1.71 The real and imaginary parts of the permeability for a magnetite single crystal; typical
relaxation effects as opposed to resonant absorption [47] (cp Figure 5.18)



approaches may be imagined to merge. Rather remarkably Galt [47] interpreted the losses
in Fe;Oy crystals, as indicated by Figure 1.71, in terms of relaxation and calculated that
the eddy current effects were virtually negligible. However, eddy current losses are consid-
ered to be appreciable in commercial MnZn ferrites, which contain ferrous ions to reduce
the anisotropy and increase the low-frequency permeability at the expense of the useful
frequency range, with p = 107> to 10™* @ m. Due to this, reoxidation is used to give
layers of Fe>Os at the grain boundaries, or impurities such as calcium are introduced, which
segregate at the grain boundaries and form insulating layers.



